
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 2, April 2005

A Reinforcement Learning - Adaptive Control
Architecture for Morphing

John Valasek,∗ Monish D. Tandale,† and Jie Rong‡

Texas A&M University, College Station, Texas 77843-3141

This paper develops a control methodology for morphing, which combines Machine Learn-
ing and Adaptive Dynamic Inversion Control. The morphing control function, which uses
Reinforcement Learning, is integrated with the trajectory tracking function, which uses
Structured Adaptive Model Inversion Control. Optimality is addressed by cost functions rep-
resenting optimal shapes corresponding to specified operating conditions, and an episodic
Reinforcement Learning simulation is developed to learn the optimal shape change policy.
The methodology is demonstrated by a numerical example of a 3-D morphing air vehicle,
which simultaneously tracks a specified trajectory and autonomously morphs over a set of
shapes corresponding to flight conditions along the trajectory. Results presented in the paper
show that this methodology is capable of learning the required shape and morphing into it,
and accurately tracking the reference trajectory in the presence of parametric uncertainties
and initial error conditions.

Nomenclature
α learning rate
β positive step-size parameter
δ temporal difference error
ε tracking error for linear states
ε tracking error for angular states
γ discount factor
π reinforcement learning policy
�j(s) basis function
ρ density of air
σ = [φ θ ψ]T 3-2-1 Euler angles that describe the orientation of the body axes relative to the inertial

axes
σ r Euler angles for the reference trajectory
θpa parameter vector for approximating the preference function
θv parameter vector for approximating the value function
� true inertia parameter vector
�̂ adaptive inertia parameter vector

Received 18 March 2001; revision received 30 July 2003; accepted for publication 26 August 2003. Copyright © 2005 by
the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC.
∗Associate Professor & Director, Flight Simulation Laboratory, Aerospace Engineering Department. Associate Fellow, AIAA.
valasek@tamu.edu, http://jungfrau.tamu.edu/valasek/
† Graduate Research Assistant, Flight Simulation Laboratory, Aerospace Engineering Department. Student Member, AIAA.
monish@neo.tamu.edu
‡ Graduate Research Assistant, Flight Simulation Laboratory, Aerospace Engineering Department. Student Member, AIAA.
jierong@tamu.edu

174

http://jungfrau.tamu.edu/valasek/
mailto: monish@neo.tamu.edu
mailto: jierong@tamu.edu

VALASEK, TANDALE, AND RONG

�̃ error between adaptive and true inertia parameter vector
τ 6× 6 symmetric positive definite matrix
� positive scalar constant
ω = [p q r]T angular velocity of the smart block along the body axes
ω̃ matrix representation of the cross product between ω and a compatible vector
A(st) set of actions available in state st
cj preselected center states vector
Cφ cos(φ)
Cda,Kda design matrices
Cy,Cz center state vectors
f flight condition
F control force
Fd drag force
H basis vector for function approximation
I mass moments of inertia of the smart block in the body axes
Jl nonlinear transformation relating ṗc and vc
Ja nonlinear transformation relating σ̇ and ω

J cost function
Jy cost function component corresponding to the y dimension
Jz cost function component corresponding to the z dimension
m mass of the smart block
m̂ adaptive parameter that learns the mass
M control moment
Md drag moment
pc = [X Y Z]T position of the center of mass of the smart block along the inertial axes
p(s, a) preference function: tendency to select action a at state s
R reward
R weighting matrix
S set of possible states for reinforcement learning
Sθ sin(θ)
Sy(f) optimal y dimension at flight condition f
Sz(f) optimal z dimension at flight condition f
vc = [u v w]T linear velocity of the smart block along the body axes
V Lyapunov function
V π(s) state value function for policy π
Vy voltage control for the y dimension
Vz voltage control for the z dimension
[XbYbZb]T body axes
[XNYNZN]T inertial axes
[x y z]T dimension of the smart block along the body axes
Ya(σ , σ̇ , σ̈) regression matrix

I. Introduction

CURRENT interest in morphing vehicles has been fuelled by advances in smart technologies, including mate-
rials, sensors, actuators, and their associated support hardware and microelectronics. Morphing research has

led to a series of breakthroughs in a wide variety of disciplines that, when fully realized for aircraft applica-
tions, have the potential to produce large increments in aircraft system safety, affordability, and environmental
compatibility.1 Although there are several definitions and interpretations of the term morphing, it is generally agreed
that the concept refers to large scale shape changes or transfigurations. Various organizations which are researching

175

VALASEK, TANDALE, AND RONG

morphing technologies for both air and space vehicles have adopted their own definitions according to their needs.
The National Aeronautics and Space Administration’s (NASA) Morphing Project defines morphing as an efficient,
multi-point adaptability that includes macro, micro, structural and/or fluidic approaches. 2 The Defense Advanced
Research Projects Agency (DARPA) uses the definition of a platform that is able to change its state substantially
(on the order of 50%) to adapt to changing mission environments, thereby providing a superior system capability
that is not possible without reconfiguration. Such a design integrates innovative combinations of advanced materials,
actuators, flow controllers, and mechanisms to achieve the state change.3

In spite of their relevance, these definitions do not adequately address or describe the supervisory and control
aspects of morphing. Reference 4 attempts to do so by making a distinction between Morphing for MissionAdaptation,
and Morphing for Control. In the context of flight vehicles, Morphing for MissionAdaptation is a large scale, relatively
slow, in-flight shape change to enable a single vehicle to perform multiple diverse mission profiles. Conversely,
Morphing for Control is an in-flight physical or virtual shape change to achieve multiple control objectives, such as
maneuvering, flutter suppression, load alleviation and active separation control. In this paper, the authors consider
the problem of Morphing for Mission Adaptation.

In the context of intelligent systems, three essential functionalities of a practical Morphing for Mission Adaptation
capability are:

1. When to reconfigure
2. How to reconfigure
3. Learning to reconfigure
When to reconfigure is driven by mission priorities/tasks, and leads to optimal shape being a system parameter.

In the context of a reconfigurable vehicle such as an aircraft, each shape results in performance values (speed,
range, endurance, etc.) at specific flight conditions (Mach number, altitude, angle-of-attack, and sideslip angle).
It is a major issue, as the inability for a given aircraft to perform multiple missions successfully can directly be
attributed to shape, at least if aerodynamic performance is the primary consideration. This is because for a given task
or mission, there is usually an ideal or optimal vehicle shape, e.g. configuration.4 However, this optimality criteria
may not be known over the entire flight envelope in actual practice, and the mission may be modified or completely
changed during operation. How to reconfigure is a problem of sensing, actuation, and control. 5 They are important
and challenging since large shape changes produce time-varying vehicle properties, and especially, time-varying
moments and products of inertia. The controller must therefore be sufficiently robust to handle these potentially
wide variations. Learning to reconfigure is perhaps the most challenging of the three functionalities, and the one
which has received the least attention. Even if optimal shapes are known, the actuation scheme(s) to produce them
may be only poorly understood, or not understood at all; Reinforcement Learning is therefore a candidate approach.
It is important that learning how to reconfigure is also life-long learning. This will enable the vehicle to be more
survivable, operate more safely, and be multi-role.

This paper proposes and develops a conceptual control architecture which addresses these essential functionalities
of Morphing for Mission Adaptation. Called Adaptive-Reinforcement Learning Control (A-RLC), it is a marriage of
Adaptive Dynamic Inversion Control and Machine Learning. By comparison to morphing research reported in the
literature which focus on structures and actuation, A-RLC addresses the optimal shape changing of an entire vehicle.
A-RLC learns the commands which produce the optimal shape, defined as a function of operating condition, while
maintaining accurate trajectory tracking. A-RLC uses Structured Adaptive Model Inversion (SAMI) as the trajectory
tracking controller for handling time-varying properties, parametric uncertainties, and disturbances. For learning
the optimality relations between the operating conditions and the shape, and learning how to produce the optimal
shape at every operating condition over the life of the vehicle, A-RLC uses Reinforcement Learning. Optimality is
addressed with cost functions which penalize deviations from the optimal shape. The paper first defines the shape
changing dynamics of a hypothetical three-dimensional Smart Block air vehicle of constant volume, which can morph
in all the three spatial dimensions. The Reinforcement Learning module of A-RLC is developed next, and uses an
actor-critic method to learn how to morph into specified shapes. This is followed by development of the SAMI
control module, which handles Smart Block parametric uncertainties, and initial error conditions, while tracking
a trajectory. The A-RLC methodology is demonstrated with a numerical example of the Smart Block air vehicle
autonomously morphing over a set of optimal shapes, corresponding to specified flight conditions, while tracking a
specified trajectory.

176

VALASEK, TANDALE, AND RONG

II. Morphing Smart Block Simulation
A smart block in the form of a rectangular parallelopiped as shown in Fig. 1, represents the morphing air vehicle.

The morphing used in this research involves a change in the dimensions of the rectangular parallelopiped, while
maintaining a total volume of 32 units. The Reinforcement Learning module specifies the y and z dimensions,
corresponding to the current flight condition and the x dimension is calculated by enforcing the constant volume
condition, x = 32

yz
. It is assumed that the smart block is composed of a smart material (Piezoelectric, Shape Memory

Alloy (SMA) or Carbon Nanotubes) whose shape can be modulated by applying voltage. For simulation purposes,
we assume a second order spring mass damper kind of a model with a nonlinear spring function. The model for
relating the y dimension to the applied Vy voltage is given in Eq. 1

ÿ + 2.5ẏ + 2.5y + 0.4sin(π(y − 2))− 5 = Vy (1)

and similarly for the z dimension

z̈+ 1.8ż+ 2z+ 0.6(z− 2)(z− 4)− 4 = Vz (2)

The above dynamic models render a nonlinear relationship between the steady-state dimension and applied voltage,
as shown in Fig. 2. Also, Fig. 3 shows how the y-dimension and the z-dimension evolve for various constant inputs,
with varied initial conditions. Note that the morphing dynamics are highly nonlinear.The Reinforcement Learning
module records the cost incurred by applying the various possible voltages. Before measuring the cost associated
with a particular action, the new commanded shape should be allowed to reach steady-state. For the present system
the response is over damped for some cases, and overshoots for others, but all trajectories reach steady-state within
ten seconds. Thus the time interval between commanded morphing should be at least ten seconds. Note that the
coefficients in Eq. 1 and Eq. 2 are selected arbitrarily to form a conceptual model for the morphing dynamics and do
not represent a specific material.

The Cost Function is selected to be a function of the current shape and the current flight condition. The current
shape can be identified uniquely from the y and z dimensions of the smart block. The current flight condition is
identified by discrete values from 0 to 5, so the Cost Function J : [2, 4] × [2, 4] × [0, 5] → [0,∞]

The total cost function J can be written as a sum J = Jy + Jz. The optimal shapes are arbitrarily selected to be
nonlinear functions of the flight condition and are shown graphically in Fig. 4.

Sy = 3+ cos
(π

5
f

)
(3)

Sz = 2+ 2e−0.5f (4)

−2

−1

0

1

2

−2

−1

0

1

2
−1

−0.5

0

0.5

1

XY

Z

Fig. 1 Shape of the morphing smart block.

177

VALASEK, TANDALE, AND RONG

0 1 2 3 4 5
2

2.5

3

3.5

4

Voltage − Vy
y

di
m

en
si

on

0 0.5 1 1.5 2 2.5 3 3.5 4
2

2.5

3

3.5

4

Voltage − Vz

z
di

m
en

si
on

Fig. 2 The Steady State Dimensions corresponding to the Applied Voltage.

With the optimal y dimension given by Eq. 3, the cost function Jy is defined as

Jy = (y − Sy(f))2 (5)

The surface plot of Jy is shown in Fig. 5. Similarly, the cost function Jz is defined as

Jz = (z− Sz(f))2 (6)

The surface plot of Jz is shown in Fig. 5. For the simulation we specify the flight conditions that the smart block
should fly at various locations along a pre-designated flight path (Fig. 6). For this preliminary example the optimal
shapes are not correlated to the flight path, but depend only on the flight condition.

The objective of the Reinforcement Learning Module is to learn the control policy that, for a specific flight
condition, commands the voltage which produces the optimal shapeSy andSz. Therefore, the Reinforcement Learning
module seeks to minimize the total cost J over the entire flight trajectory.

A. Mathematical Model for the Dynamic Behavior of the Smart Block
The dynamic behavior of the smart block is like a hovering air vehicle. The simulation assumes absence of gravity.

The vehicle has thrusters along all three axis which act as the control effectors. Note that the total velocity vector of
the vehicle can point in any arbitrary direction.

0 5 10
1.5

2

2.5

3

3.5

4

4.5

Time (sec)

y
di

m
en

si
on

0 5 10
2

2.5

3

3.5

4

4.5

Time (sec)

z
di

m
en

si
on

Fig. 3 The Morphing Dynamics for y and z dimensions when subjected to various input voltages Vy and V z.

178

VALASEK, TANDALE, AND RONG

0 1 2 3 4 5
2

2.5

3

3.5

4

f

S
y

0 1 2 3 4 5
2

2.5

3

3.5

4

f

S
z

Fig. 4 Optimal Shapes at the different Flight Conditions.

The dynamic behavior of the smart block is modeled by nonlinear six degree-of-freedom equations.6 The equations
are written in two coordinate systems: an inertial axis system, and a body fixed axis with origin at the center of mass
of the smart block.

The structured model approach is followed and the dynamic equations are partitioned into ‘kinematic level’ and
‘acceleration level’equations. The kinematic states and the acceleration states are related by the differential equations

ṗc = Jlvc (7)

σ̇ = Jaω (8)

0

5
0

5

0

5

10

y dimension
Flight Condition

O
bj

ec
tiv

e
F

un
ct

io
n

Jy

0

5
0

5

0

5

10

z dimension
Flight Condition

O
bj

ec
tiv

e
F

un
ct

io
n

Jz

Fig. 5 Cost Function Components Jy & Jz.

0 50 100 150 200
0

2

4

6

Flight Path Distance

F
lig

ht
 C

on
di

tio
n

Fig. 6 Flight Condition at various Flight Path Locations.

179

VALASEK, TANDALE, AND RONG

where

Jl =

CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ
CθSψ SφSθSψ + CφCψ CφSθSψ − SφCψ
−Sθ SφCθ CφCθ




Ja =

1 Sφtan(θ) Cφtan(θ)

0 Cφ −Sφ
0 Sφsec(θ) Cφsec(θ)


 (9)

The acceleration level differential equations are

mv̇c + ω̃mvc = F+ Fd (10)

I ω̇ + İω + ω̃Iω =M+Md (11)

ω̃ =

 0 −r q

r 0 −p
−q p 0


 (12)

Note that for this study the motion of the smart block is simulated in the absence of gravity. Also Eq. 11 has an
additional term İω, when compared to rigid body equations of motion. This term is a consequence of the shape
change and is responsible for speeding up or slowing down the rotation of the block due to the time rate of change
in the moment of inertia about a particular axis.

The drag force Fd is modeled as a function of the air density ρ, the square of the velocity along the axis and the
area of the smart block perpendicular to the axis.

Fd = −ρ
2


 u2sgn(u)yz

v2sgn(v)xz

w2sgn(w)xy


 (13)

Similarly, the drag moment Md is modeled as a function of the air density ρ, the square of the angular velocity along
the axis and the area of the surfaces of the smart block parallel to the axis.

Md = −ρ
2


p2sgn(p)x(y + z)
q2sgn(q)y(x + z)
r2sgn(r)z(x + y)


 (14)

B. Trajectory Generation
The reference trajectory is arbitrary and is generated as a combination of straight lines and sinusoidal curves.

Fig. 7 shows a sample reference trajectory that the smart block is required to track. The total flight path is divided into
an odd number of segments of variable lengths. During every odd numbered segment the Y and Z locations remain

0

20

40

60

80

100

0
5
0

5

X (m)

Y (m)

Z
 (

m
)

Fig. 7 Reference Trajectory for Positions along Inertial Axis.

180

VALASEK, TANDALE, AND RONG

0 20 40 60 80 100
0

2

4

X (m)

Y
 (

m
)

0 5
0

2

4

Y (m)

Z
 (

m
)

0 20 40 60 80 100
0

2

4

X (m)

Z
 (

m
)

Fig. 8 Projections of the Reference Trajectory in Y-X, Z-Y and Z-X planes.

constant while the values of Y and Z are generated by a random function. The even numbered segments connect the
trajectories in two adjacent sections with smooth sinusoidal curves. The smart block is supposed to move along the
flight trajectory with a constant inertial velocity along the XN inertial axis. For the attitude reference, it is supposed
to trace prescribed sinusoidal oscillations along the XN inertial axis. Fig. 8 shows the projections of the reference
trajectory in Y-X, Z-Y and Z-X planes. Fig. 8, subplot 1, shows the top view and subplot 3 shows the side view with
motion from left to right. Subplot 2 shows the front view with the smart block moving towards the observer.

III. Reinforcement Learning Module
A. Overview of Reinforcement Learning

Reinforcement Learning is a method of learning from interaction to achieve a goal.7 Reinforcement Learning
methodology makes use of agents and environments. An agent is defined as a learner and decision-maker, and the
environment defined as everything outside the agent. The agent interacts with its environment, and the objective is
for the agent to learn a mapping or policy, π : S → A from the state-space S to the action space A that maximizes
some scalar reinforcement signal r : S × A→ R over a specified period of time8. Reinforcement Learning methods
specify how the agent changes its policy as a result of its experiences, and generally speaking the goal is to maximize
the total amount of reward over the long run. They are particularly suited for problems that either have no model,
or very complex models, and for this reason are model-free control methods. Reinforcement Learning has been
applied to a wide variety of physical control tasks, both real and simulated. For example, an acrobat system is a
two-link, under-actuated robot roughly analogous to a gymnast swinging on a highbar. Controlling such a system
by Reinforcement Learning has been studied by many researchers.9,10,11 Besides Reinforcement Learning, other
model-free control approaches include artificial Neural Networks and Fuzzy Logic12.

In Reinforcement Learning, the agent interacts with its environment at each of a sequence of discrete time steps,
t = 0, 1, 2, 3, At each time step t , the agent receives some representation of the environment’s state, st ∈ S, and
on that basis it selects an action, at ∈ A(st). One time step later, partly as a consequence of its action, the agent
receives a numerical reward, rt+1 = R, and finds itself in a new state, st+1. The mapping from states to probabilities
of selecting each possible action at each time step, denoted by π , is called the agent’s policy. Here πt(s, a) indicates
the probability that at = a given st = s at time t .

The value of a state s under a policy π , denoted by V π(s), is defined as the expected return starting from s and
thereafter, following policy π . The objective of Reinforcement Learning is to find the optimal policy π∗ that has the
optimal state-value function V ∗(s), defined as V ∗(s) = maxπ V π(s). This method of finding an optimal policy is
called policy iteration, and the process of computing the current V π(s) is called policy evaluation. Using V π(s), the

181

VALASEK, TANDALE, AND RONG

policy π can then be improved to policy π ′, and this process is called policy improvement. Finally, V π
′
(s) can then

be used in successive iterations to compute a yet more improved policy, π ′′.
There are three major methods for policy iteration: Dynamic Programming, Monte Carlo methods, and Temporal-

Difference learning. Dynamic Programming refers to a collection of algorithms that can be used to compute optimal
policies given a perfect model of the environment as a Markov decision process (MDP). The key idea is the use of
value functions to organize and structure the search for good policies. Classical Dynamic Programming algorithms
13,14,15 are of limited utility in Reinforcement Learning, both because of their assumption of a perfect model and their
great computational expense. However, they are very important theoretically. Monte Carlo methods are employed
to estimate functions using an iterative, incremental procedure. The term “Monte Carlo” is sometimes used more
broadly for any estimation method whose operation involves a significant random component. For the present context
it represents methods which solve the Reinforcement Learning problem based on averaging sample returns. To ensure
that well-defined returns are available, they are defined only for episodic tasks, and it is only upon the completion of
an episode that value estimates and policies are changed. By comparison with Dynamic Programming, Monte Carlo
methods can be used to learn optimal behavior directly from interaction with the environment, with no model of the
environment’s dynamics. They can be used with simulation, and it is easy and efficient to focus Monte Carlo methods
on a small subset of the states. All Monte Carlo methods for Reinforcement Learning have been developed only
recently, and their convergence properties are not well understood. Temporal-Difference methods can be viewed as an
attempt to achieve much the same effect as Dynamic Programming, but with less computation and without assuming
a perfect model of the environment. Sutton’s method of Temporal-Differences is a form of the policy evaluation
method in Dynamic Programming in which a control policy π0 is to be chosen16. The prediction problem becomes
that of learning the expected discounted rewards, V π(i), for each state i in S using π0. With the learned expected
discounted rewards, a new policy π1 can be determined that improves upon π0. The algorithm may eventually
converge to some policy under this iterative improvement procedure, as in Howard’s algorithm.17 Q-Learning is
a form of the successive approximations technique of Dynamic Programming, first proposed and developed by
Watkins.18 Q-learning learns the optimal value functions directly, as opposed to fixing a policy and determining the
corresponding value functions, like Temporal-Differences. It automatically focuses attention to where it is needed,
thereby avoiding the need to sweep over the state-action space. Additionally, it is the first provably convergent direct
adaptive optimal control algorithm.

In many applications of Reinforcement Learning to control tasks, the state space is too large to enumerate the
value function so function approximators must be used to compactly represent it. For example, tile coding has been
used in many Reinforcement Learning systems.19,20,21,22 Other commonly used approaches include neural networks,
clustering, nearest-neighbor methods and cerebellar model articulator controller.

B. Implementation of Reinforcement Learning Module
For the present research, the agent in the smart block problem is its Reinforcement Learning module, which

attempts to minimize the total amount of cost over the entire flight trajectory. To reach this goal, it endeavors to learn,
from its interaction with the environment, the optimal policy that, given the specific flight condition, commands
the voltage that changes the smart block’s shape to the optimal one. The environment is the flight conditions which
the smart block is flying in, along with its shape. We assume that the Reinforcement Learning module has no prior
knowledge of the relationship between voltages and the dimensions of the block, as defined by morphing control
functions in Eq. 1 and Eq. 2. Also it does not know the relationship between the flight conditions, costs and the
optimal shapes as defined in Eq. 4 to Eq. 6. However, the Reinforcement Learning module does know all possible
voltages that can be applied. It has accurate, real-time information of the smart block’s shape, the present flight
condition, and the current cost provided by a variety of sensors.

The Reinforcement Learning module learns the state value function using Actor-Critic methods.7 These are
classical Temporal-Difference learning methods that utilize two parametric structures, one called the actor, and the
other called the critic. The actor consists of a parameterized control law or policy function, which is used to select
actions. The critic approximates a value function that is used to critique the actions made by the actor, thereby
capturing the effect that the policy function will have on the future cost. At any given time, the critic provides
guidance on how to improve the policy function. In return, the actor can be used to update the critic. An algorithm

182

VALASEK, TANDALE, AND RONG

that successively iterates between these two operations will converge to the optimal solution over time. An Actor-
Critic method is selected for the current research primarily for convenience of implementation and evaluation, due
to it’s separate memory structure to explicitly represent the policy, independent of the value function. Since two
separate modules are used to represent value functions and policies, modifications to one module (different types
of action sets, state-spaces, and reward functions) can be made without affecting the other module. Additionally,
Actor-Critic methods are able to handle problems with a continuous state-space. One way to do this (shown below)
is to use linear function approximation methods. A parameterized functional form with a parameter vector is used to
represent the value functions in the Critic, and the action preference functions in the Actor. Central to the operation
of the Actor-Critic method is the Temporal-Difference error defined in Eq. 15, which is used to determine whether
an action is better or worse than expected.

δt = rt+1 + γV (st+1)− V (st) (15)

At the same time, the critic updates its current estimated value function using the Temporal-Difference error

V (st)← V (st)+ δt (16)

In Eq. 15, V is the current estimated value function used by the critic. If the Temporal-Difference error is positive,
it suggests that the tendency to select at when in state st should be strengthened for the future. If the Temporal-
Difference error is negative, it suggests that the tendency should be weakened. The policy implemented by the actor
is based on the preference functions, p(s, a) which indicate the tendency to select each a when in each state s.
Example policies are, the greedy policy

πt(s, a) = argmax
a
p(s, a) (17)

and the Gibbs softmax policy7

πt(s, a) = Pr{at = a|st = s} = ep(s,a)∑
a e

p(s,a)
(18)

The strengthening or weakening tendency described above is implemented by increasing or decreasing p(st , at),
for instance, using

p(st , at)← p(st , at)+ βδt (19)

As shown in the Morphing Smart Block Simulation section, for this research the dimensions of the morphing block
are continuous. Therefore, the morphing block has a continuous state-space, and its state-value function V π(s) and
action-preference function Pat (s) are both defined on continuous domains. One approach to solving this type of
Reinforcement Learning problem with a continuous state-space is function approximation methods. In the present
example, the approximate state-value function V π(s) is represented using a parameterized functional form with
parameter vector θv

V π(s) =
N∑
j=1

θvj�j (s), ∀s ∈ S (20)

where �j(s) is predetermined and satisfies

�i(s) ·�j(s) =
{

1 if i = j
0 if i �= j

}
(21)

Thus the basis vector

H = [
�i(s) �2(s) . . . �N(s)

]T
(22)

is an orthogonal vector that satisfies

HHT = IN×N (23)

183

VALASEK, TANDALE, AND RONG

Using Eq. 22, Eq. 20 becomes

V π(s) = HT θv, ∀s ∈ S (24)

AsHT is fixed,V π(s) depends totally on θv , and varies from time step to time step only when θv changes. Updating
θv is related to the Temporal-Difference error δt as defined in Eq. 15. The process of deriving the updating formula
for θv is shown as follows: First, we selected the gradient descent method for updating V (st), upon which Eq. 16
becomes

V (st)← V (st)+ αδt (25)

Using Eq. 24, Eq. 25 becomes

HT
t θv ← HT

t θv + αδt (26)

whereHt =
[
�1(st) �2(st) . . . �N(st)

]
, andHt is the known coefficient matrix. Using Eq. 23, the formula for

updating θv becomes

θv ← θv + αδtHt (27)

Note that the purpose of the Reinforcement Learning module is not to compute the exact V π(s), but to learn the
optimal policy π∗ with the optimal state-value function V ∗(s). In the process of policy iteration, an intermediate
policy π can be improved to a better policy π ′ even if its state-value function V π(s) is not exactly computed.

Similarly for the actor, the preference function for each action is represented using a parameterized functional
form with parameter vector θpa .

pa(s) = HT θpa (28)

Since V (s) and pa(s) are both defined on the same state-space, the basis vector H can also be used for V (s). Using
Eq. 19, and following a similar process from Eq. 25 to Eq. 27, the formula for updating θpa is

θpa ← θpa + αβδtHT
t (29)

Actor-critic methods are on-policy learning methods since the critic must learn about and critique whatever policy
is currently being followed by the actor. The Temporal-Difference error is the only output of the critic and drives
all learning in both actor and critic, as suggested in Eq. 27 and Eq. 29. The Reinforcement Learning module is
summarized in Fig. 9.

Fig. 9 Reinforcement Learning Module.7

184

VALASEK, TANDALE, AND RONG

The Reinforcement Learning agent always encounters an exploration-exploitation dilemma when it selects the
next action given its current state7. If it selects a greedy action that has the highest preference for the current state,
then it is exploiting its knowledge obtained so far, about the values of the actions. If instead it selects one of the
non-greedy actions, then it is exploring to improve its estimate of the non greedy actions’ values. In the early stage of
the learning, the Reinforcement Learning agent employs a uniform probability policy under which each action has
the same probability to be selected. In this way it can explore as many states and actions as possible. In the middle
stage, it changes to a Gibbs Softmax Policy as described in Eq. 18, under which the actions with a higher preference
have higher probability to be selected. Using this policy allows the module to partially explore and partially exploit
at the same time. In the final stage, it uses a greedy policy, as described in Eq. 17, that allows it to totally exploit its
previous experience.

IV. Structured Adaptive Model Inversion
A. A Brief Introduction to Structured Adaptive Model Inversion (SAMI)

The goal of the SAMI controller is to track the reference trajectories, even when the dynamic properties of the
smart block change, due to the morphing. Structured Adaptive Model Inversion (SAMI)23 is based on the concepts of
Feedback Linearization24, Dynamic Inversion, and Structured Model Reference Adaptive Control (SMRAC).25,26,27

In SAMI, dynamic inversion is used to solve for the control. The dynamic inversion is approximate, as the system
parameters are not modeled accurately. An adaptive control structure is wrapped around the dynamic inverter to
account for the uncertainties in the system parameters.28,29,30 This controller is designed to drive the error between
the output of the actual plant and that the reference trajectories to zero, with prescribed error dynamics. Most
dynamic systems can be represented as two sets of differential equations, an exactly known kinematic level part, and
a momentum level part with uncertain system parameters. The adaptation included in this framework can be limited
to only the uncertain momentum level equations, thus restricting the adaptation only to a subset of the state-space,
enabling efficient adaptation. SAMI has been shown to be effective for tracking spacecraft31 and aggressive aircraft
maneuvers32. The SAMI approach has been extended to handle actuator failures and to facilitate correct adaptation
in presence of actuator saturation.33,34,35

B. Mathematical Formulation of the SAMI Controller for Attitude Control
The attitude equations of motion for the smart block are given by Eq. 8 and Eq. 11. Without the angular drag and

the İω term, Eq. 8 and Eq. 11 can be manipulated to obtain the following form23

I ∗a (σ)σ̈ + C∗a (σ , σ̇)σ̇ = PTa (σ)M (30)

where the matrices I ∗a (σ), C∗a (σ, σ̇) and P(σ) are defined as

Pa(σ) � J−1
a (σ) (31)

I ∗a (σ) � PTa IPa (32)

C∗a (σ, σ̇) � −I ∗a J̇aPa + PTa [P̃aσ̇]IPa (33)

The left hand side of Eq. 30 can be linearly parameterized as follows

I ∗a (σ)σ̈ + C∗a (σ , σ̇)σ̇ = Ya(σ , σ̇ , σ̈)� (34)

where and � is defined as � �
[
I11 I22 I33 I12 I13 I23

]T
. It can be seen that the product of the inertia matrix

and a vector can be written as

Iν =
(ν)�, ∀ν ∈ R
3 (35)

where
 ∈ R
3×6 is defined as

(ν) �


ν1 0 0 ν2 ν3 0

0 ν2 0 ν1 0 ν3

0 0 ν3 0 ν1 ν2


 (36)

185

VALASEK, TANDALE, AND RONG

The terms on the left hand side of Eq. 30 can be written as

I ∗a σ̈ = PTa IPa σ̈
= PTa
(Pa σ̈)� (37)

C∗a σ̇ = −PTa IPaJ̇aPa σ̇ + PTa [P̃a σ̇]IPa σ̇
= PTa {−
(PaJ̇aPa σ̇)+ [P̃a σ̇]
(Pa σ̇)}� (38)

Combining Eqs. 37 and 38 we have the linear minimal parametrization for the inertia matrix36.

I ∗a (σ)σ̈ + C∗a (σ , σ̇)σ̇
= PTa {
(Pa σ̈)−
(PaJ̇aPa σ̇)+ [P̃a σ̇]
(Pa σ̇)}�
= Ya(σ , σ̇ , σ̈)� (39)

The attitude tracking problem can be formulated as follows. The control objective is to track an attitude trajectory
in terms of the 3-2-1 Euler angles. The desired reference trajectory is assumed to be twice differentiable with respect
to time. Let ε � σ -σr be the tracking error. Differentiating twice and multiplying by I ∗a throughout

I ∗a ε̈ = I ∗a σ̈ − I ∗a σ̈r (40)

Adding (Cda + C∗(σ , σ̇))ε̇ + Kda ε on both sides,

I ∗a ε̈ + (Cda + C∗a (σ , σ̇))ε̇ +Kdaε = I ∗a σ̈ − I ∗a σ̈r + (Cda + C∗a (σ , σ̇))ε̇ +Kdaε (41)

The RHS of Eq. 41 can be written as

(I ∗a σ̈ + C∗a (σ , σ̇)σ̇)− (I ∗a σ̈r + C∗a (σ , σ̇)σ̇r)+ Cda ε̇ +Kdaε (42)

From Eq. 30 and the construction of Y similar to Eq. 39, the RHS of Eq. 41 can be further written as

PTa M− Ya(σ , σ̇ , σ̇r , σ̈ r)�+ Cda ε̇ +Kdaε (43)

So the control law can be now chosen as

M = P−Ta {Ya(σ , σ̇ , σ̇r , σ̈ r)�− Cda ε̇ −Kdaε} (44)

The above control law requires that the inertia parameters � be known accurately, but they may not be known
accurately in actual practice. So by using the certainty equivalence principle30, adaptive estimates for the inertia
parameters �̂ will be used for calculating the control.

M = P−Ta {Ya(σ , σ̇ , σ̇r , σ̈ r)�̂− Cda ε̇ −Kdaε} (45)

With the control law given in Eq. 45 the closed loop dynamics takes the following form

I ∗a ε̈ + (Cda + C∗a (σ , σ̇))ε̇ +Kdaε = Ya(σ , σ̇ , σ̈)�̃ (46)

where �̃ = �̂−�. The update for the parameter �̂ and the stability proof can be obtained by doing a Lyapunov
analysis.

186

VALASEK, TANDALE, AND RONG

Consider the candidate Lyapunov function

V = 1

2
ε̇
T
I ∗a ε̇ +

1

2
εT Kdaε + 1

2
�̃
T
τ−1�̃ (47)

Taking the derivative of the Lyapunov function along the closed loop trajectories given by Eq. 46

V̇ = 1

2
ε̇
T
İ ∗a ε̇ + ε̇

T
I ∗a ε̈ + ε̇

T
Kdaε + 1

2
˙̃
�
T

τ−1�̃ (48)

which can be simplified as

V̇ = ε̇
T [1

2
İ ∗a − C∗a]ε̇ − ε̇

T
Cda ε̇ + (ε̇T Ya(σ , σ̇ , σ̇r , σ̈ r)+ ˙̃

�
T

τ−1)�̃ (49)

The first term vanishes because [12 İ ∗a − C∗a] is skew symmetric. Setting the coefficient of �̃ to 0, to obtain the adaptive
laws.

˙̃
� = −τYa(σ , σ̇ , σ̇r , σ̈ r)

T ε̇ (50)

From the definition of �̃ and assuming that the true parameter � remains constant,

˙̂
� = −τYa(σ , σ̇ , σ̇r , σ̈ r)

T ε̇ (51)

This update law renders the derivative of the Lyapunov function

V̇ = −ε̇
T
Cda ε̇ (52)

Thus the derivative is negative semi definite. From Eq. 47 and Eq. 52 it can be concluded that ε,ε̇ and � are bounded.
Using the standard procedure of application of Barbalat’s lemma30,37, asymptotic stability of the tracking error
dynamics can be concluded for bounded reference trajectories.

C. Mathematical Formulation of the SAMI Controller for Control of Linear States
Following similar lines as the attitude controller, Eq. 7 and Eq. 10, without the drag term can be cast in the

following form

I ∗l p̈c + C∗l ṗc = PTl F (53)

where the matrices I ∗l , C∗l and Pl are defined as

Pl � J−1
l (54)

I ∗l � PTl mPl (55)

C∗l � −I ∗l J̇lPl + PTl ω̃mPl (56)

The control law with the adaptive parameter m̂ is

F = P−Tl {Ylm− Cdl ε̇ −Kdlε} (57)

where

Yl = PTl Pl p̈c(ref) − PTl PlJ̇lPl ṗc(ref) + PTl ω̃Pl ṗc(ref) (58)

Subscript (ref) indicates the respective reference state and ε� pc − pc(ref) is the tracking error for the linear position.
The update law for the adaptive parameter m̂ is

˙̂m = −�YTl ε̇ (59)

187

VALASEK, TANDALE, AND RONG

V. A-RLC Architecture Functionality
The Adaptive-Reinforcement Learning Control Architecture is composed of two sub-systems: Reinforcement

Learning and Structured Adaptive Model Inversion (SAMI) (Fig. 10). The two sub-systems interact significantly
during both the episodic learning stage, when the optimal shape change policy is learned, and the operational stage,
when the plant morphs and tracks a trajectory. For either type of stage, the system functions as follows.

Considering the Reinforcement Learning sub-system at the top of Fig. 10 and moving counterclockwise, the
Reinforcement Learning module initially commands an arbitrary action from the set of admissible actions. This
action is sent to the plant, which produces a shape change. The cost associated with the resultant shape change
in terms of system states, parameters, and user defined performance measures, is evaluated with the cost function
and then passed to the Critic. The Critic calculates the Temporal-Difference error using its current estimated state
value function, which is sent to the Actor. The Critic modifies it’s state value function according to the Temporal-
Difference error, and likewise the Actor updates it’s action preference function. For the next episode, the Actor
generates a new action based on the current policy and its updated action preference function, and the sequence
repeats itself.

Considering the SAMI sub-system at the bottom of Fig. 10, shape changes in the plant due to actions generated
by the Actor cause the plant dynamics to change. The SAMI controller maintains trajectory tracking irrespective of
the changing dynamics of the plant due to these shape changes.

Fig. 10 Adaptive-Reinforcement Learning Control Architecture.

188

VALASEK, TANDALE, AND RONG

VI. Numerical Example
A. Purpose and Scope

The purpose of the numerical example is to demonstrate the learning performance and the trajectory tracking
performance of the A-RLC architecture. To learn the optimal shape change policy a total of 200 learning episodes
are used, each consisting of a single 200 second transit through a 100 meter long path. The reference trajectory to
be tracked in each episode is generated arbitrarily. The sequence of the flight conditions is random, and changes
twice during each episode. At a particular flight condition the Reinforcement Learning Module commands arbitrary
voltages at ten second intervals, that result in the corresponding shape and records the cost expended due to that
shape. Thus it builds up its knowledge base and learns the optimal shape change policy.

After the learning episodes are complete, the learned knowledge of the Reinforcement Learning Module and
the trajectory tracking capability of the SAMI Controller have to be evaluated. These are evaluated with a single
pass through the path, with a randomly generated reference trajectory and an arbitrary flight condition change at
approximately 50 second intervals. Fig. 6 shows a typical flight condition sequence.

B. Learning the Optimal Policy for Shape Change
For the definitions of the morphing control functions and the cost functions defined by Eq. 1 to Eq. 5, this

Reinforcement Learning problem can be decoupled into two independent problems that correspond to the y and z
dimensions respectively. For the y dimension Reinforcement Learning problem, the state has two elements: the value
of y dimension and the flight condition s = {y, f }. The state set consisting of all possible states is a 2-Dimensional
continuous Cartesian space S = [2, 4] × [0, 5]. For each state, the action set consists all possible voltages that can be
applied A(s) = {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. Similarly for the z dimension, the state set is [2, 4] × [0, 5],
and the action set is {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. Note that the control can take only the discrete values shown
above.

For simplicity, the training is conducted only at six discrete flight conditions{0, 1, 2, 3, 4, 5}. For the function
approximation for V πt (s) and pat (s), a relatively simple linear approximation method was used: tile coding. The
basis function �j(s)is defined as follows

�j(s) =
{

1 if (s − cj)TR−1(s − cj) ≤ 1
0 if (s − cj)TR−1(s − cj) > 1

(60)

For the y dimension, the set of all center state vectors is 2-dimensional,Cy = y × f , where f = {0, 1, 2, 3, 4, 5},
and Cy has 102 total elements. The weighting matrix R−1 is defined as

R−1 =
[
r2

1 0
0 r2

2

]−1

r1 = 0.1, r2 = 0.0625 (61)

In tile coding, the basis function�j is called a binary feature or a tile. One advantage of tile coding is the capability
of controlling the overall features which are activated at one time. In the present case, only one feature is present at
one time. For the z dimension, the tile �j(s), the center state vector set Cz = z× f , and the weighting matrix R−1

are defined in the same fashion.
Fig. 11 is a graphical representation of the errors in the preferred voltages of the y-dimension selected by theActor,

when compared with the true values used for simulation. The preferred voltages are calculated based on the policy and
the estimated action preference functions currently used.As the learning progresses from 20 to 200 episodes, the error
plot becomes flatter and the errors at more points converge to zero. This indicates that the action preference functions
are being learned accurately. The decrease in error is less significant from 100 to 200 episodes than from 20 to 60
episodes, since the focus shifts from exploration to exploitation, and the action preference functions asymptotically
converge to those of the optimal policy. Note that the error at y = 3.5 appears to increase with successive episodes.
This point in the state-space has only been visited at flight condition 1 within 200 episodes, and not at any other
flight condition. Since a function approximation is being used, extrapolation is occurring and may give rise to an
incorrect voltage, and therefore nonzero error. With a finer resolution of discrete voltages in the action set, this
would not occur. However, here it does not affect the results since that point is never visited in this example (see
Fig. 3).

189

VALASEK, TANDALE, AND RONG

0

5

2
3

4
−5

0

5

F

20 Episodes

y dimension
E

rr
or

 V
y

0

5

2
3

4
−5

0

5

F

60 Episodes

y dimension

E
rr

or
 V

y

0

5

2
3

4
−5

0

5

F

100 Episodes

y dimension

E
rr

or
 V

y

0

5

2
3

4
−5

0

5

F

200 Episodes

y dimension

E
rr

or
 V

y
Fig. 11 Error in the Action Preference Function after a) 20 episodes, b) 60 episodes, c) 100 episodes , d) 200 episodes.

Figure 12 compares the time histories of the achieved shapes with those of the optimal shapes for a typical single
learning episode of the later stages, as a result of the voltages commanded by the Reinforcement Learning agent.
Values of the achieved shape are seen to be close, but not exactly equal to, the optimal values. The Reinforcement
Learning agent cannot learn the optimal policy exactly because the applied control can take only discrete values
(which are specified in the action set). The voltage that leads to the optimal shape may lie in between the values in
the voltage action set. This problem can be rectified by using a continuous action set, so that any value in between
the control limits can be commanded. Use of a continuous action set in the A-RLC formulation will be addressed in
future research.

C. Trajectory Tracking
The control objective for the SAMI controller is to track the reference trajectories, irrespective of initial condition

errors, parametric uncertainties, and changes in the dynamic behavior of the smart block due to morphing.

0 100 200
2

3

4

5

di
m

en
si

on
 −

 y
 (

m
) Optimal Shape

Achieved Shape

0 100 200
2

3

4

5

di
m

en
si

on
 −

 z
 (

m
)

0 100 200
−0.5

0

0.5

1

1.5

Time (s)

dy
/d

t (
m

/s
)

0 100 200
−1

0

1

2

Time (s)

dz
/d

t (
m

/s
)

Fig. 12 Comparison between True Optimal Shape and Shape Learned by the Reinforcement Learning Agent, for a
Sequence of Flight Conditions.

190

VALASEK, TANDALE, AND RONG

0 20 40 60 80 100
0

2

4

X (m)

Y
 (

m
)

Actual Trajectory
Reference

0 5
0

2

4

Y (m)

Z
 (

m
)

0 20 40 60 80 100
0

2

4

X (m)

Z
 (

m
)

Fig. 13 Projections of the Trajectory in Y-X, Z-Y and Z-X planes.

Figure 13 shows that the adaptive control maintains close tracking of the reference trajectories. Figure 14 and
Fig. 15 show the time histories of the linear and angular states respectively. The deviations from the reference
trajectory for the linear velocities v and w seen in Fig. 14, are due to rapid changes in the smart block’s dimensions.
Also note that the vehicle has displacements along y and z inertial axes with commanded pitch and yaw angles zero.
Since the conceptual air vehicle has thrusters on all three axes and is capable of hover, total velocity can be in any
arbitrary direction.

Figure 16 shows the variation in the true parameters and the update of the adaptive parameters. The adaptive
parameters do not converge to the true parameters, which is commonly seen in adaptive control systems. The
parameters only converge to the true values if the reference trajectory is persistently exciting. 30 Most importantly,
Fig.16 shows that the adaptive parameters are bounded, and do not diverge. Figure 17 shows that the control forces
and moments are well behaved.

0 100 200
0

50

100

150

X
 (

m
)

0 100 200
2

3

4

5

Y
 (

m
)

0 100 200
0

2

4

6

Z
 (

m
)

Time (s)

0 100 200
0

0.5

1

1.5

u
(m

/s
)

Actual Trajectory
Reference

0 100 200
−1

0

1

2

v
(m

/s
)

0 100 200
−1

0

1

2

w
 (

m
/s

)

Time (s)

Fig. 14 Time Histories of the Linear States.

191

VALASEK, TANDALE, AND RONG

0 100 200
−100

0

100

φ
(d

eg
)

0 100 200
−5

0

5

θ
(d

eg
)

0 100 200
−4

−2

0

2

ψ
 (

de
g)

Time (s)

0 100 200
−20

0

20

p
(d

eg
/s

)

Actual Trajectory
Reference

0 100 200
−2

0

2

q
(d

eg
/s

)

0 100 200
−1

0

1

r
(d

eg
/s

)

Time (s)

Fig. 15 Time Histories of the Angular States.

The stability proof for SAMI presented earlier guarantees asymptotic stability of the tracking error only for constant
true parameters. Here it has been applied it for a morphing smart block in which the parameters are varying. SAMI
can still retain these stability properties if there is a large timescale separation between the morphing dynamics and
the update of the adaptive parameters. If the morphing takes place very slowly relative to the update of the adaptive

parameters, �̇ is negligible as compared to ˙̂
� and the update of the adaptive parameter is not affected. As per the

definition that was cited for Morphing for Mission Adaptation, it is a large scale, relatively slow, in-flight shape
change. So we conclude that this control architecture is promising candidate for Morphing for Mission Adaptation.
In contrast to this, Morphing for Control, addresses rapid shape changing needed for maneuvering, etc. The present
trajectory tracking controller cannot handle rapid shape changes and hence is not applicable to Morphing for Control.

In the current simulation, the true parameters which are learned are the inertia and mass. Mass remains constant,
but the inertia changes as the smart block morphs into different shapes. The SAMI controller does not implement the

0 50 100 150 200
0

100

200

300

400

||I
ne

rt
ia

 V
ec

to
r|

| Estimated
True

0 50 100 150 200
−50

0

50

100

M
as

s

Time (s)

Fig. 16 Time Histories of the Adaptive Parameters.

192

VALASEK, TANDALE, AND RONG

0 100 200
−10

−5

0

5

F
x

(N
)

0 100 200
−10

0

10

F
y

(N
)

0 100 200
−10

−5

0

5

F
z

(N
)

Time (s)

0 100 200
−10

−5

0

5

M
x

(N
m

)

0 100 200
−2

−1

0

1

M
y

(N
m

)

0 100 200
−1

0

1

M
z

(N
m

)

Time (s)

Fig. 17 Time Histories of the Control Forces and Moments.

term İω in the Eq. 11, so İω acts as a disturbance that perturbs the tracking. However, the SAMI controller is able to
maintain adequate tracking performance. Note that the design of the controller does not explicitly account the drag
force and drag moment which act as external disturbances. However, the simulation results show that SAMI is able
to handle external disturbances due to the drag forces thereby ensuring that A-RLC controller performs well.

VII. Conclusions and Future Research
This paper proposed and developed a control methodology for morphing vehicles, combining machine learning

and adaptive dynamic inversion control. For optimal shapes of an entire vehicle, defined as a function of operating
condition, this Adaptive-Reinforcement Learning Control learns the commands which produce the optimal shape,
while maintaining accurate trajectory tracking. Selection of cost functions, derivations of the dynamical model and
trajectory of the air vehicle, the Reinforcement Learning controller, and the Structured Adaptive Model Inversion
controller were presented. The methodology was demonstrated by a numerical example of a three-dimensional air
vehicle autonomously morphing while tracking a specified trajectory over a finite set of flight conditions.

Based on the results presented in this paper, it is concluded that:
1. For the numerical example presented, theAdaptive-Reinforcement Learning Controller maintains asymptotic

tracking in the presence of parametric uncertainties and initial condition errors.
2. The control architecture retains the stability properties of the SAMI controller if the morphing is slow as

compared to the rate of update of adaptive parameters. Morphing for Mission Adaptation is a slow shape
change, hence Adaptive-Reinforcement Learning Control is a promising candidate methodology for the
control of Morphing for Mission Adaptation.

3. The Reinforcement Learning Module can successfully learn the control policy that results in the optimal
shape at every flight condition. In addition, the Reinforcement Learning module can function in realtime,
which may lead to better performance as time progresses since learning continues as the system operates.

Several aspects will be addressed in future research. First, the present trajectory tracking controller cannot handle
rapid shape changes and hence is not applicable to Morphing for Control. A trajectory tracking controller which uses
the shape parameter as a state in the system is being investigated, to handle fast morphing. The current action set in
the Reinforcement Learning Module is composed of only discrete values, and efforts are underway to accommodate
continuous action sets in the A-RLC methodology. Finally, a more realistic air vehicle model than the conceptual
hovering air vehicle used here will be used, and the current smart material model is also being refined to incorporate
the hysteresis behavior commonly observed in Shape Memory Alloys.

193

VALASEK, TANDALE, AND RONG

Acknowledgments
The authors wish to acknowledge the support of the Texas Institute for Intelligent Bio-Nano Materials and

Structures for Aerospace Vehicles. The material is based upon work supported by NASA under award no. NCC-
1-02038. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. The authors
thank the Associate Editor and reviewers for their many insightful comments and suggestions, which improved the
paper.

References
1Wlezien, R., Horner, G., McGowan, A., Padula, A., Scott, M., Silcox, R., and Simpson, J., “The Aircraft Morphing Program,”

No. AIAA-98-1927.
2McGowan, A.-M. R., Washburn, A. E., Horta, L. G., Bryant, R. G., Cox, D. E., Siochi, E. J., Padula, S. L., and Holloway,

N. M., “Recent Results from NASA’s Morphing Project,” Proceedings of the 9th Annual International Symposium on Structures
and Materials, No. SPIE Paper Number 4698-11, San Diego, CA, 17-21 March 2002.

3Wilson, J. R., “Morphing UAVs change the shape of warfare,” Aerospace America, February 2004, pp. 23–24.
4Bowman, J., Weisshaar, T., and Sanders, B., “Evaluating The Impact Of Morphing Technologies On Aircraft Performance,”

43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, No. AIAA-2002-1631, Denver,
CO, 22-25 April 2002.

5Scott, M. A., Montgomery, R. C., and Weston, R. P., “Subsonic Maneuvering Effectiveness of High Performance Aircraft
Which Employ Quasi-Static Shape Change Devices,” Proceedings of the SPIE 5th Annual International Symposium on Structures
and Materials, San Diego, CA, March 1-6 1998.

6Nelson, R. C., Flight Stability and Automatic Control, chap. 3, McGraw-Hill, 1998, pp. 96–105.
7Sutton, R. and Barto, A., Reinforcement Learning - An Introduction, The MIT Press, Cambridge, Massachusetts, 1998.
8Si, J., Barto, A. G., Powell, W. B., and Wunsch, D., editors, Handbook of Learning and Approximate Dynamic Programming,

chap. 16, IEEE Press Series on Computational Intelligence, Wiley-IEEE Press, 2004, p. 411.
9DeJong, G. and Spong, M. W., “Swinging up the acrobot: An example of intelligent control,” Proceedings of the American

Control Conference, 1994, pp. 2158–2162.
10Boone, G., “Minimum-time control of the acrobot,” International Conference on Robotics and Automation, Albuquerque,

NM, 1997.
11Sutton, R. S., “Generalization in reinforcement learning: Successful examples using sparse coarse coding,” Advances in

Neural Information Processing Systems: Proceedings of the 1995 Conference, edited by D. S. Touretzky, M. C. Mozer, and M. E.
Hasselmo, MIT Press, Cambridge MA, pp. 1038–1044.

12Kartalopoulos, S. V., Understanding Neural Networks and Fuzzy Logic: Basic Concepts and Applications, IEEE Press
Understanding Science & Technology Series, Wiley-IEEE Press, August 29 1995.

13Bellman, R. E., Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.
14Bellman, R. E. and Dreyfus, S. E., Applied Dynamic Programming, Princeton University Press, Princeton, NJ, 1962.
15Bellman, R. E. and Kalaba, R. E., Dynamic Programming and Modern Control Theory, Academic Press, New York, 1965.
16Sutton, R. S., “Learning to Predict by the method of Temporal Differences,” Machine Learning, Vol. 3, 1998, pp. 9–44.
17Williams, R. J. and Baird, L. C., “Analysis of some incremental variants of policy iteration: First Steps toward Understanding

Actor-Critic Learning Systems,” Tech. Rep. NU-CCS-93-11, Boston, 1993.
18Watkins, C. J. C. H. and Dayan, P., Learning from Delayed Rewards, Ph.D. thesis, Cambridge Unversity, Cambridge, UK,

1989.
19Moore, A. W., Efficient Memory-Based Learning for Robot Control, Ph.D. thesis, University of Cambridge, Cambridge,

UK, 1990.
20Shewchuk, J. and Dean, T., “Towards learning time-varying functions with high input dimensionality,” Proceedings of the

Fifth IEEE International Symposium on Intelligent Control, 1990, pp. 383–388.
21Lin, C. S. and Kim, H., IEEE Transactions on Neural Networks, No. 530-533, 1991.
22Miller, W. T., Scalera, S. M., and Kim, A., “A Neural Network control of dynamic balance for a biped walking robot,”

Proceedings on the Eighth Yale Workshop on Adaptive and Learning Systems, Dunham Laboratory, Yale University, Center for
Systems Science, 1994, pp. 156–161.

23Subbarao, K., Sructured Adaptive Model Inversion: Theory and Applications to Trajectory Tracking for Non-Linear
Dynamical Systems, Ph.D. thesis, Aerospace Engineering Department, Texas A&M University, College Station, TX, 2001.

24Slotine, J. and Li, W., Applied Nonlinear Control, Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458, 1991, pp.
207–271.

194

VALASEK, TANDALE, AND RONG

25Akella, M. R., Structured Adaptive Control: Theory and Applications to Trajectory Tracking in Aerospace Systems, Ph.D.
thesis, Aerospace Engineering Department, Texas A&M University, College Station, TX, 1999.

26Schaub, H., Akella, M. R., and Junkins, J. L., “Adaptive Realization of Linear Closed-Loop Tracking Dynamics in the
Presence of Large System Model Errors,” The Journal of Astronautical Sciences, Vol. 48, October-December 2000, pp. 537–551.

27Akella, M. R. and Junkins, J. L., “Structured Model Reference Adaptive Control in the Presence of Bounded Disturbances,”
AAS/AIAA Space Flight Mechanics Meeting, Monterey, CA, Feb 9-11 1998, pp. 98–121.

28Narendra, K. and Annaswamy, A., Stable Adaptive Systems, Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458,
1989.

29Sastry, S. and Bodson, M., Adaptive Control: Stability, Convergence, and Robustness, Prentice-Hall, Inc., Upper Saddle
River, New Jersey 07458, 1989, pp. 14–156.

30Ioannou, P. A. and Sun, J., Robust Adaptive Control, chap. 1, Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458,
1996, pp. 10–11.

31Subbarao, K., Verma, A., and Junkins, J. L., “Structured Adaptive Model Inversion Applied to Tracking Spacecraft
Maneuvers,” Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting, No. AAS-00-202, Clearwater, FL, 23-26 January
2000.

32Subbarao, K., Steinberg, M., and Junkins, J. L., “Structured Adaptive Model Inversion Applied to Tracking Aggressive
Aircraft Maneuvers,” Proceedings of the AIAA Guidance, Navigation and Control Conference, No. AAS-00-202, Montreal
Canada, 6-9 August 2001.

33Tandale, M. D. and Valasek, J., “Structured Adaptive Model Inversion Control to Simultaneously Handle Actuator Failure
and Actuator Saturation,” AIAA Guidance, Navigation, and Control Conference, No. AIAA-2003-5325, Austin, TX, 11-14 August
2003.

34Tandale, M. D., Subbarao, K., Valasek, J., and Akella, M. R., “Structured Adaptive Model Inversion Control with Actuator
Saturation Constraints Applied to Tracking Spacecraft Maneuvers,” Proceedings of the American Control Conference, Boston,
MA, 2 July 2004.

35Tandale, M. D. and Valasek, J., “Adaptive Dynamic Inversion Control with Actuator Saturation Constraints Applied to
Tracking Spacecraft Maneuvers,” Proceedings of the 6th International Conference on Dynamics and Control of Systems and
Structures in Space, Riomaggiore, Italy, 18-22 July 2004.

36Ahmed, J., Coppola, V. T., and Bernstein, D. S., “Adaptive Asymptotic Tracking of Spacecraft Attitude Motion with Inertia
Matrix Identification,” AIAA Journal of Guidance Control and Dynamics, Vol. 21, Sept-Oct 1998, pp. 684–691.

37Khalil, H. K., Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ, 3rd ed., 2001.

195

